REDESCRIPTION OF *SIMULIIDUM PRISCUM* WESTWOOD AND *PSEUDOSIMULIUM HUMIDUM* (BRODIE) (INSECTA: DIPTERA: RHAGIONIDAE) FROM THE PURBECK LIMESTONE GROUP (LOWER CRETAEOUS) OF ENGLAND

M. B. Mostovski
Paleontological Institute, 123 Profsoyuznaya Str., Moscow, 117997, Russia

A. J. Ross
Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK

R. Szadziewski
Department of Invertebrate Zoology, University of Gdansk, Pilsudskiego 46, 81-378 Gdynia, Poland

W. Krzeminski
Institute of Systematics & Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, 31-016, Cracow, Poland

SYNOPSIS
The holotype of *Simulium priscum* Westwood, 1854 has been rediscovered in the collections of The Natural History Museum, London. It is a single wing from the Lulworth Formation (Berriasian) of Durlston Bay, Dorset. *S. priscum* and *Pseudosimulium humidum* (Brodie 1845) from the Lulworth Formation of Wiltshire are redescribed and placed within the Rhagionidae.

KEY WORDS *Simulium, Pseudosimulium, Rhagionidae, Purbeck, Cretaceous, England*

INTRODUCTION

Recent work to re-organise and curate the fossil insect collection at The Natural History Museum, London (NHM) has resulted in the discovery of some unlabelled type specimens. In particular those from the Purbeck Limestone Group of England that were originally figured in Brodie (1845) and Westwood (1854) have been re-examined. Brodie and Westwood named some of the specimens and later Giebel (1856) and Handlirsch (1906–08) put names to many of the other figures. The Brodie collection of Purbeck fossil insects consists of about 2000 specimens but only about a quarter of the type and figured specimens had previously been labelled. So far 74 out of the 75 Purbeck specimens figured in Brodie (1845) and about half of the specimens figured in Westwood (1854) have been found (Clifford et al. 1994; Ross & Jarzembowski 1996). Continued close examination of the collection should reveal more type and figured specimens although, unfortunately, some (e.g. the type of *Libellulium agrias* Westwood, refigured in Jarzembowski 1994) are clearly not present. Brodie's collection was purchased by the NHM in 1898, 1 year after his death and 53 years after the publication of his book. During his lifetime as a priest he moved many times and lived in the counties of Wiltshire, Buckinghamshire, Gloucestershire and Warwickshire (Anon 1992); so it is not surprising that some specimens are missing. It is hoped that they will turn up in another museum.

One of the rediscovered types is that of *Simulium priscum* Westwood. An enigmatic fly, the systematic placement of which had become the subject of some speculation because the type was presumed lost. Similarly, the placement of another fossil, *Pseudosimulium humidum* Brodie, was uncertain for a long time (Craig 1977). Both these taxa were originally assumed to be allied to *Simulium* (Simulidae) and later considered to belong to the Ceratopogonidae by some authors. Both families are of medical importance today due to their blood-feeding habits and their fossils are of interest to scientists studying the origins of blood-feeding in insects.

Close examination has revealed that both *S. priscum* and *P. humidum* actually belong to the snipe fly family, the Rhagionidae. They both possess a sinusuous Radius (R)2+3 vein, which is one of the rhagionid autapomorphies according to Stuckenberg (2001). This family of predatory flies consists of 23 extant genera with about 530 extant species (Nagatomi 1982). Rhagionids are well represented in the fossil record, however most of them (other than those in
amber) still await description. Evenhuis (1994) listed 24 genera and 48 extinct species of rhagionids known from the fossil record, mainly from the Mesozoic, and some other taxa have been recently added (Ansgor 1996; Koval and Mostovsk 1997; Mostovsk 2000; Mostovsk & Jarzembowski 2000; Mostovsk et al. 2000). The oldest are from the Lower Jurassic of Germany and India (Ansgor 1996; Mostovsk & Jarzembowski 2000). Mesozoic rhagionids are important for elucidating the phylogeny of flies because this family forms the stem-group of the Brachycera.

Systematic Descriptions

Genus SIMULIDIIUM Westwood, 1854

Type Species. Simulidium priscum Westwood, 1854.

Diagnosis. Vein Radius (R)$_2$$_3$ sinuous, ending at Costa (C) not close to R$_1$. Four medial veins. Basal part of Median (M)$_2$ and intermedial cross-vein constitute right angle. Anal cell closed with a point stalk.

Occurrence. Lower Cretaceous (Berriasian) of Dorset, England.

Simulidium priscum Westwood, 1854 (Figs 1A, B, 2)

1854 _Simulidium priscum_ Westwood: 394, pl. 15, fig. 15.
1856 _Simulidium priscum_ Westwood; Giebeld: 229.
1879 _Simulidium priscum_ Westwood; Goss: 142–143.
1881–85 _Simulidium priscum_ Westwood; Scudder in Zittel: 811, fig. 1087.
1886 _Simulidium priscum_ Westwood; Scudder: 93.
1887 _Simulidium priscum_ Westwood; Scudder in Zittel: 812, fig. 1104.
1891 _Simulidium priscum_ Westwood; Scudder: 226.
1895 _Simulidium priscum_ Westwood; Woodward: 392.
1906–08 _Simulidium priscum_ Westwood; Handlirsch: 629, pl. 51, fig. 3.
1939 _Simulidium priscum_ Westwood; Handlirsch: 161.
1954 _Simulidium priscum_ Westwood; Rohdendorf: 240.
1974 _Simulidium priscum_ Westwood; Rohdendorf: 271.
1986 _Simulidium priscum_ Westwood; Crosskey & Taylor: 401.
1987 _Simulidium priscum_ Westwood; Crosskey: 430.
1988 _Simulidium priscum_ Westwood; Grogan & Szadziewsk: 808–809.
1990 _Simulidium priscum_ Westwood; Szadziewsk: 231.
1990 _Simulidium priscum_ Westwood; Crosskey: 58.
1992 _Simulidium priscum_ Westwood; Szadziewsk & Schüttler: 73.
1992 _Simulidium priscum_ Westwood; Jarzembowski: 179.
1994 _Simulidium priscum_ Westwood; Evenhuis: 113, 117.
1995 _Simulidium priscum_ Westwood; Borkent: 12, 29, 84.
1996 _Simulidium priscum_ Westwood; Szadziewsk: 25.

Holotype. NHM Palaeontology Department In.59266. An isolated wing from the Lulworth Formation (Berriasian) of Durlston Bay, Dorset, England.

Description. Wing rather broad. Length preserved 3.8 mm, total length would have been 4.5 mm. Subcosta (Sc) close to R$_1$. Vein R$_1$ long. Costal sections Sc–R$_1$ and R$_1$–R$_2$$_3$ subequal. R$_2$$_3$ (R$_2$$_3$ + R$_4$ + R$_5$) and M stem and M$_1$ and M$_2$ forking at the same level. Fork R$_4$$_5$ rather long. R$_4$ evenly arched. Cross-vein r–m occurs about halfway along the discal cell. M$_1$ and M$_2$ slightly divergent; M$_2$, M$_3$ and M$_4$ subparallel. Discal cell narrow, with both anterior and posterior margins gently curved.

Figure 1 _Simulidium priscum_ Westwood, NHM In.59266 (holotype), Lulworth Formation (Berriasian); Durlston Bay, Dorset; Brodie Collection. Length of wing 3.8 mm. A, photograph; B, camera lucida drawing.

Figure 2 _Simulidium priscum_ Westwood; original figure of holotype in Westwood (1854: pl. 15, fig. 15).
Figure 3 *Pseudosimulium humidum* (Brodie), specimen NHM I.3952 (holotype); Insect Limestone, Lulworth Formation (Berriasian); Dinton, Wiltshire; Brodie Collection. A, photograph; body length 2.6 mm. B, camera lucida drawing; scale bar = 1 mm.

Genus *PSEUDOSIMULIUM* Handlirsch, 1906

TYPE SPECIES. *Simulium? humidum* Brodie, 1845.

DIAGNOSIS. Third antennal segment ovoid, slightly tapered apically. Arista not stylete. R_{2+3} sinuous, ending at costa not close to R_1. Four medial veins. Anal cell closed with point stalk.

OCCURRENCE. Lower Cretaceous (Berriasian) of Wiltshire, England.

Pseudosimulium humidum (Brodie, 1845) (Figs 3A, B, 4)

1845 *Simulium humidum* Brodie; Morris: 119.
1856 *Simulium humidum* Brodie; Giebel: 229.
1879 *Simulium humidum* Brodie; Goss: 145.
1881 *Simulium humidum* Brodie; Scudder: 93.
1891 *Simulium humidum* Brodie; Scudder: 226.
1895 *Simulium humidum* Brodie; Woodward: 392.
1904 *Simulium humidum* Brodie; Meunier: 404.
1906–08 *Pseudosimulium humidum* (Brodie); Handlirsch: 631, pl. 51, fig. 10.
1939 *Pseudosimulium humidum* (Brodie); Handlirsch: 162.
1954 *Pseudosimulium humidum* (Brodie); Hennig: 290.
1964 *Pseudosimulium humidum* (Brodie); Rohndorf: 240.
1974 *Pseudosimulium humidum* (Brodie); Rohndorf: 270.
1974 *Pseudosimulium humidum* (Brodie); Rubtzov: 250.
1977 *Pseudosimulium humidum* (Brodie); Craig: 175–178.
1981 *Pseudosimulium humidum* (Brodie); Peterson: 362.
1986 *Pseudosimulium humidum* (Brodie); Crosskey & Taylor: 401.
1987 *Pseudosimulium humidum* (Brodie); Crosskey: 430.
1988 *Pseudosimulium humidum* (Brodie); Szadziewski: 8.
1988 *Pseudosimulium humidum* (Brodie); Grogan & Szadziewski: 808.
1990 *Pseudosimulium humidum* (Brodie); Crosskey: 58.
1994 *Pseudosimulium humidum* (Brodie); Evenhuis: 288.
1995 *Pseudosimulium humidum* (Brodie); Borkent: 84.
1996 *Pseudosimulium humidum* (Brodie); Ross & Jarzembowski: 113, fig. 1 (8).

HOLOTYPE. NHM Palaeontology Department I.3952. Female from the Insect Limestone, Lulworth Formation (Berriasian) of Dinton, Vale of Wardour, Wiltshire, England.

DESCRIPTION. Body compact. Body length 2.6 mm, wing length 2.4 mm. Second and third antennal segments of the same width. Arista approximately two times as long as third antennal segment. Cheeks narrow. Proboscis shorter than head length. Labella not enlarged. Mesonotum with hairs. Sc close to R_1. Vein R_1 not long. Costal section Sc–R_1 somewhat longer than R_1–R_{2+3}. RS forking before M stem, R4+5.

Figure 4 *Pseudosimulium humidum* (Brodie), detail of head of holotype, specimen NHM I.3952; Insect Limestone, Lulworth Formation (Berriasian); Dinton, Wiltshire; Brodie Collection. Scale bar = 0.5 mm.
orking before M_{1+2}. Vein R_{4} distinctly sinuous. Cross-vein r-m occurs before midlength of discal cell, roughly at the level of basal part of M_{1}. Discal cell rather long, slightly broadened distally. Medial veins subparallel or slightly divergent. Legs slender. At least fore and hind tibiae without apical spurs.

DISCUSSION

The wing impression on specimen In.59266 (Fig. 1A) appears to be the one that was figured and named as *Simulidium priscum* by Westwood (1854) due to the presence of a deep furrow lying anterior to vein R_{2+3}, which can be seen on Westwood's figure (Fig. 2). This is the only Purbeck dipteran at the NHM that displays this feature. Westwood (1854) did not draw the cross-veins, but it is probable that he could not see them because they are faint and only visible under high magnification with low angle lighting.

The specimen was only labelled 'Purbecks' but the growth of salt crystals over the surface of the specimen indicates it came from the coast. The majority of Brodie's Purbeck insects came from inland sites in Wiltshire and from Durlston Bay on the Dorset coast (Brodie 1854), therefore it is extremely likely that this specimen came from Durlston Bay. Westwood (1854) cited the specimen as having been collected from the Middle Purbecks of Durlston Bay, but the lithology of the specimen is a cream limestone containing fusainised plant debris, which is typical of the insect-bearing horizons in the Hard and Soft Cockle beds of the Lulworth Formation (Clements 1993) and which are regarded as Berriasian (Lower Cretaceous) in age (Rasnitsyn et al. 1998).

Westwood's (1854) incomplete figure of *Simulidium priscum* resulted in much confusion over the systematic placement of the taxon. Westwood (1854: 384) described it as 'the wing of a small Dipterus insect, apparently allied to *Simulium* while Scudder in Zittel (1881–85) included *S. priscum* in the Simulidae (black flies). Handlirsch (1906–08) transferred it to the Bibionidae (march flies) and then Rohdendorf (1964) transferred it to the extinct Protopleciidae. Rubtsov (1974) doubted that *Simulidium* might be an ancestral simulid. Grogan & Szadziewski (1988) suggested that *S. priscum* could belong to the Ceratopogonidae (biting midges), which would therefore make it the oldest fossil member of that family. Carpenter (1992) did not include *Simulidium* in his treatise (Clifford et al. 1994) while Evenhuis (1994) chose to retain it provisionally under the Protopleciidae following Rohdendorf (1964). The venation of *S. priscum* agrees with the diagnosis for the Rhagionidae and, therefore, the species belongs to that family. Nagatomi (1982) regards the shape of the female terminalia as being important for subfamilial placement. Since this is unknown in *Simulidium* it therefore cannot be placed in a subfamily.

Different opinions on the systematic position of *Pseudosimulium humidum* were summarised by Craig (1977), although generally most previous authors considered it was a simulid. Craig (1977) rejected its position in the Simulidae and suggested that it may be a ceratopogonid. Rubtsov (1974) considered that this fossil may belong to the Psychodidae and Kalugina (in Kalugina & Kovalev 1985) considered that it may belong to the Coelopodidae. The aristate antennae and wing venation indicate that this species belongs instead to the Rhagionidae. There are two similar specimens present in the collection of the Natural History Museum, London. Specimen I.3499 (Fig. 5A) is obviously a snipe fly female, 3.0 mm long, closely resembling the holotype. Unfortunately, although Craig (1977) included it under *P. humidum*, its assignment to this species is not possible due to its incomplete preservation. This specimen provides some important features. At least the hind tibiae appear to be lacking terminal spurs and it probably has three sub-spherical or somewhat elongated spermathecae that are poorly visible in the abdomen. Specimen I.12706 (Fig. 5B) is labelled 'S Simulium*?'. Based on the shape of the antennae, wing venation features and its general appearance, this specimen may be included in the Rhagionidae as well. The shape of its antennae and body size is similar.
to that of *P. humidum* but there are differences in the wing venation of I.12706, in particular Sc and R₁ are somewhat longer and it has a lower angle between R₁ and R₃+₄. The specimen is incomplete, which prevents its allocation to either *P. humidum* with certainty or to a new species. The three specimens (I.3499, I.3952 and I.12706) are labelled ‘Dinton’ and are preserved in a light brown or grey micrite with fragments of fusain. This indicates that they probably came from Brodie’s Insect Limestone, which lies below the Cider Bed, in the Lulworth Formation (Ross & Jarzembowski 1996). The original figure from Brodie (1845) of the holotype is reproduced in Ross & Jarzembowski (1996).

Given that *S. priscum* and *P. humidum* are not catapogonids, then the oldest catapogonids (biting midges) are known from the Lower Cretaceous in Austrian and Lebanese amber (Szadziewski 1996; Borkent 1997, 2000, 2001), which are probably Hautervian to Barremian in age. Catapogonids are also known from the slightly younger Alava amber (Szadziewski & Arillo 1998).

The comparison and identification of rhagionids described from isolated wings is difficult since wing venation features may vary considerably. However, *S. priscum* has the combination of two characters that separate it from most other rhagionids. These are the closed anal cell and the mutual position of the M₃ base and intermedial cross-vein, forming the right angle or nearly so. The same combination is found in the recent genus *Chrysopilus*, from which *S. priscum* differs in the shape of the vein R₃+₄.

Scolorhagio mecomastigus Zhang, Zhang & Li 1993 from the Laiyang Formation (Lower Cretaceous) of China is similar to *Pseudosimulium humidum* but differs from it in the slightly larger size and in having the dorsoapical arista, petiolate anal cell and somewhat shorter costal R₁–R₃+₄ section. The position of the arista is an important feature at the generic level and indicates that *Scolorhagio* is a separate genus.

Acknowledgements

R.S. and W.K. express their thanks to Dr I. Sukacheva and the staff of the Arthropoda Laboratory of the Paleontological Institute of the Russian Academy of Sciences, Moscow for their kind assistance and help while visiting the Laboratory. Many thanks to Peter York (NHM) for taking the photographs of the rhamigobilids. M.B.M.’s study of fossil Diptera was supported by the Paleontological Society (ParisIRP, USA, via the US CRDF for the FSU, grants RG0-638(B) and RG0-822-7), the Geologists’ Association (UK) and the Russian Foundation for Basic Research (project no. 242 ‘Morphological and ecological evolution of Diptera in the Mesozoic’).

References

Goss, H. 1879. The insect fauna of the secondary or Mesozoic period and the British and foreign formations of that period in which insect remains have been detected. *Proceedings of the Geologists’ Association* 4 (3): 116–150.

Morris, J. 1854. A catalogue of British fossils: comprising the genera and species hitherto described: with references to their geological